Hopf bifurcation in a delayed reaction–diffusion–advection equation with ideal free dispersal

نویسندگان

چکیده

Abstract In this paper, we investigate a delay reaction–diffusion–advection model with ideal free dispersal. The stability of positive steady-state solutions and the existence associated Hopf bifurcation are obtained by analyzing principal eigenvalue an elliptic operator. By normal form theory center manifold reduction, direction bifurcating periodic obtained. Moreover, numerical simulations brief discussion presented to illustrate our theoretical results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delayed feedback control of a delay equation at Hopf bifurcation

We embark on a case study for the scalar delay equation ẋ(t) = λf(x(t− 1)) + b−1(x(t− θ) + x(t− θ− p/2)) with odd nonlinearity f , real nonzero parameters λ, b, and three positive time delays 1, θ, p/2. We assume supercritical Hopf bifurcation from x ≡ 0 in the well-understood single-delay case b = ∞. Normalizing f ′(0) = 1, branches of constant minimal period pk = 2π/ωk are known to bifurcate ...

متن کامل

Double Hopf bifurcation in delayed van der Pol-Duffing equation

In this paper, we study dynamics in delayed van der Pol–Duffing equation, with particular attention focused on nonresonant double Hopf bifurcation. Both multiple time scales and center manifold reduction methods are applied to obtain the normal forms near a double Hopf critical point. A comparison between these two methods is given to show their equivalence. Bifurcations are classified in a two...

متن کامل

Hopf Bifurcation Calculations in Delayed Systems

A formal framework for the analysis of Hopf bifurcations in delay differential equations with a single time delay is presented. Closed-form linear algebraic equations are determined and the criticality of bifurcations is calculated by normal forms.

متن کامل

HOPF BIFURCATION CONTROL WITH PD CONTROLLER

In this paper, we investigate the problem of bifurcation control for a delayed logistic growth model. By choosing the timedelay as the bifurcation parameter, we present a Proportional - Derivative (PD) Controller to control Hopf bifurcation. We show that the onset of Hopf bifurcation can be delayed or advanced via a PD Controller by setting proper controlling parameter. Under consideration mode...

متن کامل

Delayed Feedback Control near Hopf Bifurcation

The stability of functional differential equations under delayed feedback is investigated near a Hopf bifurcation. Necessary and sufficient conditions are derived for the stability of the equilibrium solution using averaging theory. The results are used to compare delayed versus undelayed feedback, as well as discrete versus distributed delays. Conditions are obtained for which delayed feedback...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2021

ISSN: ['1687-2770', '1687-2762']

DOI: https://doi.org/10.1186/s13661-020-01481-7